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Abstract

This is an extension of the rank detection theorem proved in [KMW24]. Instead of consider-
ing tensors composed of rank-1 terms of the form a⊗ b⊗ c for generic vectors a, b, c, we consider
those of the form a⊗ a⊗ a.

1 Introduction

In [KMW24], Kothari, Moitra, and Wein introduced an efficient rank detecting algorithm for order-
3 generic tensors T via the Koszul–Young flattening. In this writing piece, we extend this to
symmetric order-3 tensors T . That is, we consider tensors T of the form

T =
r∑

ℓ=1

a(ℓ) ⊗ a(ℓ) ⊗ a(ℓ),

where a(1), . . . , a(r) ∈ Rn are generic vectors. The goal is to determine r, given the entries T = (Tijk).

2 Rank Detection

The original rank detection method proposed in [KMW24] does not work in the symmetric case.
We propose a similar but altered method here.

Suppose T is an n × n × n tensor, and fix integers p, q = 2p + 1 with 1 ≤ p < q < n. Since q
depends on p, we will not mention q as an input variable. Define a matrix M = M(T ; p) with rows
indexed by

{(S, j) : S ⊆ [q], |S| = p, j ∈ [n− q]},

columns indexed by
{(U, k) : U ⊆ [q], |U | = p+ 1, k ∈ [n− q]},

and entries

MSj,Uk :=

q∑
i=1

1U=S⊔{i} · σ(U, i) · Ti,(j+q),(k+q). (1)
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Here, 1A denotes the {0, 1}-valued indicator for an event A, and σ(U, i) ∈ {±1} is the parity of i’s
position in U , that is,

σ(U, i) := (−1)|{j∈U : j<i}|. (2)

Note though it is written as a summation, at most one term in the sum in (1) is nonzero, which is
when U = S ⊔ {i}.

Lemma 2.1. Suppose T is a rank-1 tensor, i.e. T = a ⊗ a ⊗ a. Let a = (a1, . . . , an) and split
a into â = (a1, . . . , aq) and ã = (aq+1, . . . an). Then the flattening M = M(T ; p) from (1) is the
Kronecker product M = A(â; p)⊗ (ãã⊤) where A = A(â; p) is the

(
q
p

)
×
(

q
p+1

)
matrix

ASU =

q∑
i=1

1U=S⊔{i} · σ(U, i) · ai. (3)

As a consequence, as long as ã is not the zero vector, M has the same rank as A.

The lemma below shows that the matrix A is rank-deficient, with generic rank
(
q−1
p

)
:

Lemma 2.2. [KMW24, Lemma 3.1] Consider the matrix A = A(â; p) defined in (3). Let q =
2p + 1. If a1, . . . , aq are all zero then A = 0 and so rank(A) = 0. Otherwise, rank(A) =

(
q−1
p

)
.

Furthermore, if ai ̸= 0 for some i ∈ [q] then the columns of A indexed by {U : i ∈ U} form a basis
for the column span of A, and similarly the rows {S : i /∈ S} form a basis for the row span.

For proof of Lemma 2.2, see Section 3.1 of [KMW24].

3 Main results

Theorem 3.1 (Symmetric Tensor Rank Detection). Let 1 ≤ p < q = 2p + 1 < n. If T =∑r
ℓ=1 a

(ℓ) ⊗ a(ℓ) ⊗ a(ℓ) is n× n× n with generically chosen a(ℓ)’s, and

r ≤
(
2− 1

p+ 1

)
n− (6p+ 2)

then the matrix M(T ; p) defined in (1) has rank exactly r
(
q−1
p

)
.

For intuition, assume 1 ≪ p ≪ n. Then we have (2 − 1
p+1) → 2 as p → ∞. Moreover, since

we assume n grows much faster than p, then 6p + 2 is negligible compared to the leading n term.
Therefore, the condition above is roughly r ≤ 2n, asymptotically.

Proof. This proof will mostly follow proof of Theorem 2.4 in [KMW24], with a few adjustments

to fit our symmetric case. We start by separating a(ℓ) = (a
(ℓ)
1 , a

(ℓ)
2 , . . . , a

(ℓ)
q , a

(ℓ)
q+1, . . . , a

(ℓ)
n ) into

â(ℓ) = (a
(ℓ)
1 , a

(ℓ)
2 , ..., a

(ℓ)
q ) and ã(ℓ) = (a

(ℓ)
q+1, . . . , a

(ℓ)
n ). We are going to use â(ℓ) to construct A. By

Lemma 2.1, the equation for M becomes M =
∑r

ℓ=1A(â
(ℓ); p)⊗ (ã(ℓ)ã(ℓ)⊤).

Since a is generic, ai ̸= 0 for all i ∈ [q]. Then, the matrix A = A(â; p) defined in (3) can be
factored as A = diag(v)·Ã·diag(w) where ÃSU := A(1; p) =

∑
i∈[q] 1U=S⊔{i}·σ(U, i), vS =

∏
i∈S a−1

i ,

and wU =
∏

i∈U ai. By Lemma 2.2 we have rank(Ã) =
(
q−1
p

)
. Therefore, we can factor Ã = Q̃R̃⊤
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where Q̃, R̃ are
(
q
p

)
×
(
q−1
p

)
and

(
q

p+1

)
×
(
q−1
p

)
, respectively. Now writeA = QR⊤ whereQ = diag(v)·Q̃

and R = diag(w) · R̃. Factor M as

M =

r∑
ℓ=1

A(â(ℓ); p)⊗ (ã(ℓ)ã(ℓ)⊤) =

 Q(1) Q(r)

⊗ · · · ⊗
ã(1) ã(r)

 R(1) R(r)

⊗ · · · ⊗
ã(1) ã(r)

⊤

=: Q′R′⊤ (4)

Note in the symmetric case, M is square, so each Kronecker product has dimension
(
q
p

)
(n−q)×(

q−1
p

)
. The equation above gives a factorization of M as the product of two matrices with inner

dimension r
(
q−1
p

)
and outer dimension

(
q
p

)
(n − q) =

(
q

p+1

)
(n − q) (since q = 2p + 1). To show M

has rank exactly r
(
q−1
p

)
, we are going to argue it is enough to show that both Q′ and R′ have full

column rank. Notice by the decomposition definition of rank of a matrix, rank(M)≤ r
(
q−1
p

)
=: R.

Moreover, if we assume Q′ has full column rank and R ≤
(
q
p

)
(n − q), the outer dimension of Q′,

then Q′ has an R × R nonzero minor. A similar argument applies to R′. Thus, M has an R × R
nonzero minor, which shows rank(M)≥ R.

Let m be the smallest integer such that r ≤ mq. Note we can increase number of columns
of Q′ to r′ = mq by adding newly generated generic copies of Kronecker product Q(r+i) ⊗ ã(r+i).
If we can show the enlarged matrix has linearly independent columns, then Q′ also has linearly
independent columns. Consider the first r′

(
q−1
p

)
rows of the enlarged matrix and call it P ; this is a

square submatrix that uses all the columns, and it consists of an m×m grid of square blocks that
each have dimension (p + 1)

(
q
p

)
= q

(
q−1
p

)
. Each block contains scaled copies of Q in a (p + 1) × q

grid, and recall that Q has dimensions
(
q
p

)
×
(
q−1
p

)
. Above, we needed the enlarged Q′ to have more

rows than columns. That is, we need
(
q
p

)
(n− q) ≥ r′

(
q−1
p

)
⇔

(
q
p

)
(n− q) ≥ mq

(
q−1
p

)
⇔

(
q
p

)
(n− q) ≥

m(p+ 1)
(
q
p

)
⇔ n− q ≥ m(p+ 1).

It now suffices to show det(P ) is nonzero as a polynomial in the symbolic variables a. To do

this, it suffices to show this statement is true after plugging in zero for certain variables ã
(ℓ)
i such

that only the m square blocks on the diagonal of P remain nonzero. That is, we only need to show
the determinant is not zero for all square blocks that lie on the diagonal of P . Take one block

P ′ =


ã(1+q)1Q

(1) ã(1+q)2Q
(2) · · · ã(1+q),qQ

(q)

ã(2+q)1Q
(1) ã(2+q)2Q

(2)
...

...
. . .

ã2q−p,1Q
(1) · · · ã2q−p,qQ

(q)

 .

Then, we argue the rest of the proof that shows det(P ′) ̸= 0 is identical to the argument in
[KMW24]. Since a is generically chosen, then â and ã are also both generic. Note ã functions as
b, and â functions as a in the original proof. Thus, the symmetry in the original tensor will not
affect how we construct P ′. Hence, the same argument of finding one unique nonzero monomial
from det(P ′) to show det(P ′) ̸= 0 also works here in our case.

Similarly, we can use the same argument to conclude that R′ has full column rank, provided
n− q ≥ m(p+ 1).

Above, we needed two inequalities to hold: r ≤ mq and n− q ≥ m(p+ 1). That is,

r

q
≤ m ≤ n− q

p+ 1
.
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Note m needs to be an integer by construction, so it suffices to have

r

q
≤ n− q

p+ 1
− 1.

Multiplying by q on both sides and recalling q = 2p+ 1, we have

r ≤ q(n− q)

p+ 1
− q = (2− 1

p+ 1
)n− q(p+ 1 + q)

p+ 1
,

which leads to

r ≤ (2− 1

p+ 1
)n− (6p+

p+ 2

p+ 1
) ≤ (2− 1

p+ 1
)n− (6p+ 2) ∀ p ≥ 1.
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