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Abstract

This is an extension of the rank detection theorem proved in [KMW24]. Instead of consider-
ing tensors composed of rank-1 terms of the form a ® b ® ¢ for generic vectors a, b, ¢, we consider
those of the form a ® a ® a.

1 Introduction

In [KMW24], Kothari, Moitra, and Wein introduced an efficient rank detecting algorithm for order-
3 generic tensors T via the Koszul-Young flattening. In this writing piece, we extend this to
symmetric order-3 tensors T'. That is, we consider tensors T' of the form

T = Z a(e) X a(@) X a(e)7
(=1

where a®), ..., a(") € R™ are generic vectors. The goal is to determine r, given the entries T’ = (Tijr)-

2 Rank Detection

The original rank detection method proposed in [KMW24] does not work in the symmetric case.
We propose a similar but altered method here.

Suppose T is an n X n X n tensor, and fix integers p,q = 2p + 1 with 1 < p < ¢ < n. Since ¢
depends on p, we will not mention ¢ as an input variable. Define a matrix M = M (T'; p) with rows
indexed by

{(5,7) - S, ISI=p,j €n—d},

columns indexed by

and entries

q
Msjuy = Z Ly—sugiy - 0(U,4) - T; (j4q), (k+q)- (1)
=1
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Here, 14 denotes the {0, 1}-valued indicator for an event A, and o(U, 1) € {1} is the parity of i’s
position in U, that is, ‘ o
o(U,i) := (—1)7€V:7<i (2)

Note though it is written as a summation, at most one term in the sum in (1) is nonzero, which is
when U = S U {i}.

Lemma 2.1. Suppose T is a rank-1 tensor, i.e. T = a ® a ® a. Let a = (ay,...,a,) and split
a into @ = (a1,...,aq) and @ = (Gg41,...ayn). Then the flattening M = M(T;p) from (1) is the

Kronecker product M = A(@;p) ® (aa') where A = A(a;p) is the (g) X (p_‘f_l) matrix
q
Asy = Z ly—sugsy - o(U,4) - a;. (3)
=1

As a consequence, as long as a is not the zero vector, M has the same rank as A.

The lemma below shows that the matrix A is rank-deficient, with generic rank (qgl):

Lemma 2.2. [KMW24, Lemma 3.1] Consider the matriv A = A(a;p) defined in (3). Let ¢ =
2p+ 1. If a1,...,aq are all zero then A = 0 and so rank(A) = 0. Otherwise, rank(A) = (qgl).
Furthermore, if a; # 0 for some i € [q] then the columns of A indezed by {U : i € U} form a basis
for the column span of A, and similarly the rows {S : i ¢ S} form a basis for the row span.

For proof of Lemma 2.2, see Section 3.1 of [KMW24].

3 Main results

Theorem 3.1 (Symmetric Tensor Rank Detection). Let 1 < p < ¢ =2p+1 < n. IfT =
Py a® @ a® @ a® isn xn xn with generically chosen a¥)’s, and

r< <2—1>n—(6p+2)

p+1

then the matriz M (T;p) defined in (1) has rank exactly T(q;l).

For intuition, assume 1 < p < n. Then we have (2 — ﬁ) — 2 as p — o0o. Moreover, since

we assume n grows much faster than p, then 6p + 2 is negligible compared to the leading n term.
Therefore, the condition above is roughly r < 2n, asymptotically.

Proof. This proof will mostly follow proof of Theorem 2.4 in [KMW24], with a few adjustments

to fit our symmetric case. We start by separating a) = (agé),a(f), .. ,at(f),aﬁl, .. .,ag)) into
al) = (agg),agg), ...,ag)) and a¥) = (aﬁl, . .,ag)). We are going to use a¥) to construct A. By

Lemma 2.1, the equation for M becomes M = ,_; A(@¥;p) ® (aa®T).
Since a is generic, a; # 0 for all i € [g]. Then, the matrix A = A(a;p) defined in (3) can be
factored as A = diag(v)-A-diag(w) where Agy := A(1;p) = 3 iy Lu=sufiy o (U, ), vs = [Lies a;

and wy = [[;cy ;- By Lemma 2.2 we have rank(A) = (q;I). Therefore, we can factor A = QR



where Q, R are (Z) X (qgl) and (pj_l) X (qgl), respectively. Now write A = QR where Q = diag(v)-Q

and R = diag(w) - R. Factor M as

, oW Q"M 71 [ RW R 7T
M = ZA(a(f);p) ®@% 9N =1 ® - ® Q - ® = QRT (4
=1 a a() a® a™

Note in the symmetric case, M is square, so each Kronecker product has dimension (g) (n—q) x

(qgl). The equation above gives a factorization of M as the product of two matrices with inner
dimension 7“(‘151) and outer dimension (Z) (n—q) = (pj’rl)(n —q) (since ¢ = 2p +1). To show M
has rank exactly r(qgl), we are going to argue it is enough to show that both " and R’ have full
column rank. Notice by the decomposition definition of rank of a matrix, rank(M )< r(qgl) =: R.
Moreover, if we assume @’ has full column rank and R < (g) (n — q), the outer dimension of @,
then ' has an R x R nonzero minor. A similar argument applies to R’. Thus, M has an R x R
nonzero minor, which shows rank(M)> R.

Let m be the smallest integer such that » < mg. Note we can increase number of columns
of @ to ' = mq by adding newly generated generic copies of Kronecker product Q+%) @ g(r+i).
If we can show the enlarged matrix has linearly independent columns, then @’ also has linearly
independent columns. Consider the first r’ (q;I) rows of the enlarged matrix and call it P; this is a
square submatrix that uses all the columns, and it consists of an m x m grid of square blocks that
each have dimension (p + 1)(;’)) = q(q;I). Each block contains scaled copies of Q ina (p+1) X ¢

grid, and recall that @) has dimensions (g) X (qgl). Above, we needed the enlarged @’ to have more
rows than columns. That is, we need (g) (n—q) > r’(qgl) =3 (g) (n—q) > mgq (qgl) & (g) (n—q) >
m(p + 1)(;) en—qg>m(p+1).

It now suffices to show det(P) is nonzero as a polynomial in the symbolic variables a. To do
this, it suffices to show this statement is true after plugging in zero for certain variables &Z@) such
that only the m square blocks on the diagonal of P remain nonzero. That is, we only need to show

the determinant is not zero for all square blocks that lie on the diagonal of P. Take one block

d(1+q)1Q(l) a(1+q)2Q(2) a(1+q)7qQ(Q)
P | G @Y G2pQ® :

d?q—p,lQ(l) e &2q_p7qQ(q)

Then, we argue the rest of the proof that shows det(P’) # 0 is identical to the argument in
[KMW24]. Since a is generically chosen, then @ and a are also both generic. Note a functions as
b, and a functions as a in the original proof. Thus, the symmetry in the original tensor will not
affect how we construct P’. Hence, the same argument of finding one unique nonzero monomial
from det(P’) to show det(P’) # 0 also works here in our case.

Similarly, we can use the same argument to conclude that R’ has full column rank, provided
n—q>m(p+1).

Above, we needed two inequalities to hold: r < mgq and n —q > m(p + 1). That is,

n —

p+1°

Q

<m<

3



Note m needs to be an integer by construction, so it suffices to have

Multiplying by ¢ on both sides and recalling ¢ = 2p + 1, we have

— 1 1
rgq(n Q)_qz<2_ )n_Q(P+ +Q)7
p+1 p+1 p+1
which leads to
1 p+2 1
<(2——m—(6p+"—" )< (2— —(6p+2) Vp>1.
r<( p+1)n (6p p+1)_( p+1)n (6p+2) Vp>
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